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BACKGROUND: It is now easier than ever to
record the activity of many neurons in awake,
behaving animals. These recordings can be
obtained either with multichannel electrodes
or with two-photon microscopy, each with
their own advantages. The latter breaks records
for the number of simultaneously recorded
neurons, which can reach into the hundreds of
thousands. The former allows for unmatched
temporal resolution and easy access to deep
brain areas. Spoiled with this embarrassment
of riches, neuroscientists must now demon-
strate that they can use such data to answer
longstanding questions and formulate new
ones in the effort to understand the basic
principles of brain function. The primary ob-
stacle appears to be conceptual: What can we
even infer from large-scale recordings that we
could not have learned from smaller ones?

ADVANCES: Some of the recent advances in this
field have come by formulating new analysis
methods that probe specific properties of

neural computations. For example, a long-
standing question has been whether neural
circuits use a dedicated set of neural patterns
or “neural code” to represent information
regardless of whether that activity is exter-
nally or internally driven. Specifically, one
may ask whether the neural activity patterns
observed when an animal explores one en-
vironment are similar, up to a temporal permu-
tation, to the activity patterns during rest or
during sleep. The answer turned out to be a
resounding yes for grid cells in the rat en-
torhinal cortex, and a clear no for a similar
question in primary visual cortex. The activity
patterns evoked by stimuli in visual cortex
were almost as different as possible from the
patterns during spontaneous activity, and
the latter were strongly related to orofacial
behaviors instead. In further studies, move-
ments in general were found to influence
activity across the entire mouse brain, even
during the execution of sensory-guided motor
tasks. Multiple studies have now given stark

warnings to neuroscientists who thought they
were studying decision-making, workingmem-
ory, and other internal processes: What you
study might be direct reflections of movement
instead—for example, through motor effer-
ence or proprioception.
All of these statements required the devel-

opment of bespoke mathematical models that
were carefully applied to large-scale neural data
together with a well-thought-out set of statisti-
cal controls. The most successful applications
of models to neural data can be described
intuitively in words such as we did above, even
when the underlying mathematical techniques
may be quite complex.
In this Review, we synthesize some of the

most promising approaches and try to offer
insights into what motivates current studies
and how the methods developed may be fur-
ther used in the future. We emphasize the
need to answer concrete scientific questions
and the importance of performing appropriate
controls and cross-validation to avoid some the
most common pitfalls when analyzing big data.

OUTLOOK:Newly uncovered scaling laws over
the number of recorded neurons demon-
strate that in many tasks, such as neural
decoding or encoding, the amount of infor-
mation or unique variance continues to in-
crease as the number of neurons increases
even beyond 10,000. Neural activity patterns
are thus rich with information, although it
remains to be seenwhether that information
is rich with meaning. To find its meaning,
neuroscientists will need to combine large-
scale recordings with other methods and par-
adigms such as complex behavior, two-photon
optogenetics, or anatomical methods. For the
example of grid cells above, the persistence
of the neural code suggests a dynamical con-
straint imposed by recurrent circuitry; con-
nectomic reconstruction could confirm this
in the coming years.
Perhaps equally important, experimental

neuroscientists will need to quickly become
experts in computational and statistical anal-
ysis methods so that they can fully take ad-
vantage of the overwhelming amount of new
data. Innovative online summer courses such
as the Neuromatch Academy can get many
neuroscientists up to speed quickly and even
familiarize them with the rapid advances in
artificial intelligence with the new “NeuroAI”
course launched this summer.▪
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An abundance of data available for analysis. (A) Two-photon calcium imaging from multiple visual cortical
areas in a behaving mouse. (B) Raster plot of neural activity from the recording in (A), showing coordinated
activity across timescales and spatial scales.
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Analysis methods for large-scale neuronal recordings
Carsen Stringer* and Marius Pachitariu

Simultaneous recordings from hundreds or thousands of neurons are becoming routine because of
innovations in instrumentation, molecular tools, and data processing software. Such recordings can be
analyzed with data science methods, but it is not immediately clear what methods to use or how to
adapt them for neuroscience applications. We review, categorize, and illustrate diverse analysis methods
for neural population recordings and describe how these methods have been used to make progress on
longstanding questions in neuroscience. We review a variety of approaches, ranging from the
mathematically simple to the complex, from exploratory to hypothesis-driven, and from recently
developed to more established methods. We also illustrate some of the common statistical pitfalls in
analyzing large-scale neural data.

T
he past decade has brought a large ar-
ray of new tools for investigating the
brain. Among these are tools that enable
functional recordings of large numbers
of neurons with electrophysiological or

optical imaging methods (1–5). These tools
have been needed to make progress on a
variety of questions in neuroscience. For ex-
ample, single neurons respond with differ-
ent numbers of action potentials to repeated
presentations of the same stimuli (6), but it
has not been clear whether that variability
is coordinated at a macroscopic level across
entire brain areas. Similarly, neurons in sen-
sory cortical areas fire action potentials in the
absence of sensory inputs (7), but it has not
been known how their so-called “spontaneous”
activity is correlated at the level of entire
neural populations or what that activity may
represent. As a final example, individual grid
cells in the entorhinal cortex represent peri-
odic spatial features of the environment (8),
but it has not been clear how the individual
lattices align and coordinate across an entire
population.
More generally, large-scale neural record-

ings can be useful for at least three reasons:
(i) they substantially accelerate data collection;
(ii) they enable the study of coordinated neural
activity; and (iii) they enable the study of
simultaneous computations happening across
multiple spatial scales. We briefly review the
technological progress that has enabled large-
scale recordings then devote the majority of
this Review to analysis techniques for making
sense of large-scale neural data.

A brief history of technological progress

On the side of electrophysiology, the develop-
ment of Neuropixels constituted a major leap

in the number of simultaneously recorded
channels on a single electrode shank (3). This
advance was possible because of engineering
efforts toward miniaturization and electronic
integration. Subsequent iterations of the probe
have led to further miniaturization for use in
freely moving animals and more channels over
multiple shanks for use in flatter brain areas
such as the cortex and hippocampus (4), as
well as thicker and longer versions of the
probe for use in nonhuman primates (5) and
humans (9, 10). Other probes withmany chan-
nels have also been developed separately—
notably, the flat arrays of thousands of electrodes
used in retinal recordings (11), and multiple
types of flexible electrodes that promise im-
proved stability for chronic recordings (12, 13).
To take advantage of these new devices, an
overhaul of classical data processing methods
was needed because existing methods required
substantial human manual curation, which is
not effective for data at this scale. This led to
the development of automated spike-sorting
methodssuchasKilosort,MountainSort, JRClust,
and others (14–16).
On the optical imaging side, progress has

mainly relied on two-photon calcium imaging
(17). Although first developed much earlier
(18), two-photon calcium imaging became wide-
spread with the introduction of the genetically
encoded calcium indicator GCaMP6 (1). Other
factors that havedriven the adoption of calcium
imaging have been the availability of easy-to-
use commercial microscopes, innovations in
high-power laser technology, and a shift in
research interests toward smaller animalmodels
for which molecular tools such as GCaMP are
easier to develop and test. Very-large-scale
recordings of tens of thousands to hundreds
of thousands of neurons were demonstrated
in both zebrafish and mouse, although these
required sacrifices in temporal resolution (an
example recording is provided in movie S1)
(19–21). Specialized headmounted “miniscope”

devices have also been developed for use in
freely moving animals, by using either one-
photon (22) or more recently two-photon ex-
citation (23). Recent iterations of the calcium
sensors (24) more accurately represent action
potentials, and the sensors can now be tar-
geted toward specific neuronal compartments
such as somas and axons (25, 26). Calcium
imaginghas also becomeeffective innonhuman
primates (27, 28). Similar to the developments
in electrophysiology, the large amount of data
collected required the development of auto-
mated pipelines such as Suite2p, Caiman, and
others for identifying regions of interest such
as cells, extracting their time-varying activ-
ity traces and converting these traces to an
estimate of spike times through use of de-
convolution methods (20, 29, 30).
Over the past few years, these technological

improvements have spread through many
neuroscience laboratories. Large amounts of
data are being generated, and the question of
what to do with this data arises often. We
review recent analysis methods for large-
scale neural recordings and the discoveries
they generated. This Review will proceed as
a series of questions, methods, and possible
answers that someone might encounter when
analyzing large-scale neural recordings. Perhaps
you collected this data yourself, or a collabo-
rator has collected it for you. Or perhaps you
found the data shared on the internet, there
being increasingly more open datasets online.
Here is a possible plan for how you might
approach this data: (i) To start, you might use
scaled-up versions of classical methods to look
for neurons with specific kinds of tuning
properties and study the distribution of these
properties under varying conditions. (ii) Then,
you might look for coordinated structure in
the activity of all the neurons recorded simul-
taneously, which would typically be done with
dimensionality reductionmethods. (iii) Last,
youmight attempt to connect the neural popu-
lations found in steps (i) and (ii) with task-
relevant variables that can either be explicitly
defined (stimuli or behaviors) or implicitly de-
fined through models (such as reward expecta-
tion or attentional modulation). We illustrate
such analyses with toy examples throughout
the figures.

Single-neuron properties at scale

The easiest way to start analyzing large-scale
recordings is to use existing methods for
analyzing single neurons. This can be partic-
ularly convenient as a starting point because it
allows one to replicate previous results and
ensure that the new recording method does
not introduce artifacts or warp the statistics
of the data in unknown ways. Conversely, it
allows one to validate results found in previous
studies with many fewer neurons and poten-
tially to identify special cases such as particular
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populations in which previous results do not
hold. Taking advantage of the relatively quick
pace of collecting neural recordings with mod-
ern devices, onemight be able to experimentally
acquire multiple datasets in the same animal
from different brain areas, from different cell
types, over multiple days of learning, or across
various manipulations. This enables the con-
ducting of survey-type studies, in which the
distribution of single-neuron properties is
measured and compared between neural pop-
ulations or between conditions, something that
would have been difficult with previous data-
sets of relatively few neurons (Fig. 1A). This
approach has been effective in studying the
response properties of sensory systems such as
the visual, auditory, and somatosensory corti-
ces (31–33) or the thalamic and midbrain sen-
sory areas (34–37) and has also been used in
decision-making tasks and navigation tasks
(38–41). In this data regime, exploratory analy-
ses can be performed with simple scatter plots
between pairs of parameters estimated from
single-neuron response properties (Fig. 1A).
Many response properties can typically be
measured—for example, selectivity indices (42),
tuning curve shape (43), latency (44), and
behavior correlations (45)—across trial variabil-

ity or Fano factor (46). Thus, a large number of
exploratory scatter plots can be generated and
visualized, which may allow for unexpected
relations to be discovered. This can be followed
by investigations of how the relations change
across brain areas or as a result of manipu-
lations (Fig. 1A).

Population averaging

Having potentially found some tuning prop-
erties of interest, the next step may be to
combine or “average” the neurons in some
suitable way to clearly illustrate the tuning of
the entire population. In a recent study, we
used this approach to find populations of
neurons tuned to some learned, familiar visual
stimuli and tested whether that population
responds to new stimuli according to their
visual categories (47). Other applications in-
clude identifying a neural population that is
tuned to the preparatory movement activity
or to the execution of a motor behavior, and
analyzing the dynamics of that population on
test trials with global optogenetic perturba-
tions (48, 49).
A simple example of population averaging

is the “coding direction” analysis (Fig. 1B). To
obtain a coding direction, similarly tuned neu-

rons can be averaged, which creates a less noisy
population average, and opposite-tuned pop-
ulation averages may be subtracted from this
average (47, 48, 50–53). Multiple coding di-
rections can be obtained by use of different
variables. Decoding approaches can also be
used to infer the weighting of neurons across
the coding direction—for example, with linear
regression, reduced rank regression, and other
models (54–58). One possible caveat of such
methods is that they rely on single-neuron
properties, whichmay be noisy. To improve on
this, one may start by denoising or “cosmooth-
ing” theneurons by using either simplemethods
such as principal components analysis (PCA)
or non-negative matrix factorization (NMF),
or more complex methods that use temporal
information such as Gaussian process factor
analysis (GPFA) (59).

The structure of neural population activity

A more ambitious goal may be to use large-
scale recordings to identify structure and
coordinated patterns in the neural populations
(60–66). This structure may be generated in-
trinsically by the dynamics of neural circuits,
such as in the precisely wired systems of the
Drosophila ring attractor (67) or in the central

Population averaging Population smoothing

brain areas brain areas

A

B C

Exploring single-neuron properties at scale

Fig. 1. Single-neuron analyses at scale. (A) Sequence of operations in a
typical analysis of single-neuron properties. (Left) Response properties such
as tuning curves can have multiple quantifiable properties—param1, param2,
and so on. (Left middle) Scatter plots between these properties can help
identify unexpected relations. (Middle) Scatter plots can be transformed into
2D density plots for quantification. (Middle right) Multiple density plots can
be obtained from different populations or the same population under different
manipulations. (Right) The difference in densities can reveal differences
between neural populations or the effect of manipulations.

(B) Illustration of population averaging approach. Neurons in different
brain areas are found that are selective to (left) some particular stimulus
and (middle left) some particular behavior. (Middle right) Neurons with the
same selectivity are grouped together and averaged to form multiple
coding directions. (Right) The dynamics of the coding directions can be
visualized as a function of stimuli and behavior, possibly across brain areas
and conditions. (C) Illustration of population smoothing or denoising
approach that increases the signal-to-noise ratio of single neurons to help in
better identifying single-neuron properties.
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pattern generators characterized in other in-
vertebrates (68). In mammalian brains, it is
much less clear which patterns are generated
intrinsically in a circuit andwhich are inherited
from the inputs to that circuit (69, 70). As we
shall see, useful clues can emerge by extracting
and analyzing the structure of the neural popu-
lation activity.
These analyses typically start by converting

the data into a sequence of population vectors,
with each of these vectors representing the
pattern of neural firing across the entire popula-
tion at a specific time point. This is commonly
followed by some type of dimensionality reduc-
tion method to identify simpler, latent repre-
sentations of the high-dimensional neural data.
Although the representations can be studied
in isolation, they can also be related back to
properties of the task or of the behavior.

Characterizing population vectors

To start, one may ask whether the structure
and geometry of the neural population vectors
are maintained across various task conditions

and in spontaneous activity or during sleep
(Fig. 2A). If the geometry was maintained,
that could be consistent with the hypothesis
that the neural coordination emerges from
intrinsic dynamics rather than inputs. For
example, the population vectors in entorhinal
grid cells, which represent space, maintain
their structure between wakefulness and sleep
and across multiple different environments,
suggesting a role for intrinsic attractor dynam-
ics (71). By contrast, in sensory brain regions
we and others have found a near-orthogonal
representation of sensory-evoked and sponta-
neous activity in bothmice and fish (21, 72, 73).
Another property of interest is the linear

dimensionality of the possible subspace spanned
by neural population vectors. If neural activity
in a specific circuit was restricted to a low-
dimensional subspace, across many stimuli or
behaviors, that could be consistent with the
hypothesis that neuronal network dynamics
force the activity to that subspace. Although
earlier studies had suggested that neural acti-
vity in many brain areas was restricted to a

low-dimensional subspace, theoretical analyses
showed that this may be have been due to the
low number of recorded neurons and the small
number of task conditions (74). Large-scale
recordings found that both the stimulus-evoked
and the movement-driven population activity
in mouse visual cortex is high-dimensional
and appears to obey a power-law decay of
variance across principal components (21, 75).
Similarly high-dimensional structure was found
in the cerebellum and in monkey V1 (76, 77).
By contrast, the linear dimensionality of ento-
rhinal population activity appears to be six,
regardless of task condition (71).
Another class of geometric methods focuses

on pairwise comparisons between the geo-
metries of different datasets such as, for example,
two recordings in different animals, or in the
same animal on two different days or across
experimental conditions, or between a neuro-
nal dataset and amodel (78–82). When a direct
comparison is not possible or desirable, one
may instead rotate a subspace of the neural
population activity from one dataset to match

A

B C

D

Geometry

Topology Dynamics

Exploratory analyses with dimensionality reduction

Fig. 2. Population vectors and dimensionality reduction. (A) Geometrical
approaches. (Left) Measuring angles between neural population vectors.
(Middle left) Measuring the variances and eigenvalues of the principal
components of a neural population. (Middle right) Comparing representations
patterns between neural populations and models or between two different
neural populations. (Right) Aligning representations from one neural
population to another. (B) Topological methods can identify nonlinear
underlying structure in neural population recordings, such as a torus

for grid cells. (C) Dynamical systems methods can identify dynamical
motifs, such as fixed points and line attractors. (D) Using dimensionality
reduction for exploratory analyses. (Left) Schematic of the relation
between neurons and components. (Middle left) Finding relations between
components and stimuli or behaviors. (Middle right) Scatter plots to visualize
trajectories over time for the components of interest. (Right) A different
approach called Rastermap for visualizing neural components across the
entire population at once.
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the structure of the equivalent subspace in a
different dataset (83, 84). Such subspace align-
ment approaches may be relevant for brain-
machine interfaces or for studies of across-day
learning thatmay result in “representation drift”
in somebrainareas suchas thehippocampus (85).

Nonlinear dimensionality reduction

The intrinsic dynamics of neural circuits may
result in low-dimensional population dy-
namics that span a nonlinear, curved man-
ifold and therefore may not be found with
linear methods. Nonlinear dimensionality re-
duction methods can uncover such a structure

that is low-dimensional in a topological sense
(86). Methods to identify such structures often
start by constructing a graph of population
vectors connected according to distance in
Euclidean space (Fig. 2B) and use an optimi-
zation method such as Isomap, uniform man-
ifold approximation and projection (UMAP),
or t-distributed stochastic neighbor embed-
ding (t-SNE) to map these graphs onto a low-
dimensional embedding (71, 87, 88). Last, the
embedding dimensions are often identified as
relevant behavioral variables, such as head
direction or two-dimensional (2D) position,
and the topology of the neural activity is often

compared with the topology of the task or en-
vironment (89, 90). In some cases, the analysis
of perturbations around the identified manifold
(87) or the persistence of the manifold across
behavioral states (71) can further be indicative
of attractor-like dynamics around fixed points.
The next barrier in this field is in identifying
topological invariants from more noisy and
mixed representations such as those found in
the cortex during active behavior.

Dimensionality reduction of neural dynamics

Yet another possible clue for intrinsic neuronal
dynamics comes from considering the behavior

C

B

A Encoding models

Decoding models

Importance of cross-validation

Fig. 3. Encoding, decoding, and cross-validation. (A) Two approaches for
building encoding models of neural responses. (Left) Schematic of reduced
rank regression. (Right) Schematic of encoding models with basis function
representations of discrete temporal events. (B) Decoding-based approaches.
(Left) Schematic of decoder. (Middle left) Comparison of decoder prediction
and the true variables on test trials. (Middle) Scaling of decoding error with
the number of recorded neurons or trials. (Middle right) Finding a relation
between the decoding error and another experimental variable such as a
behavior or a second neural population (Right) Using the decoder to identify
neural events corresponding to memory replay or planning. (C) Even single-

neuron analyses require careful statistical cross-validation. (Left) Apparent
sequences of neural activity may only be a consequence of ordering on
train trials if they do not persist on test trials. (Middle left) Tuning curves from
real data are often much more noisy than the assumed ideal. (Middle and right)
If the tuning curves are calculated on the training trials used to obtain the
preferred stimulus, data with no tuning may appear tuned (example 1), data
with tuning may have distorted tuning curve shapes (example 2), and
experimental manipulations may appear to produce complex tuning curve
changes (example 3). These biases are not present when tuning curves
are computed on test trials.
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of neurons across time. Neurons do not change
their firing rates randomly from one moment
to the next; instead, their dynamics can be
predictive of future neural activity, and correla-
tions exist between neurons not just instan-
taneously but also at different timelags, on
multiple timescales. Could these spatiotemporal
correlations be the result of an intrinsic dyna-
mical system, and can we uncover the rules
of the dynamics from the observed neural
patterns? This question has motivated much
research into comparing neural network sim-
ulations with neural data (91–94) or inferring
directly from data temporal structure and
complex dynamical systems (62–66, 95). How-
ever, fully reviewing that work is beyond the
scope of this Review. Further progress may
take inspiration from the relatively new field
of neural ordinary differential equations (ODEs)
(96), which has recently found applicability in
neuroscience (97).

Relating neural structure to task variables

This Review has described methods that try
to link intrinsically generated neural dynamics
to neural population activity through various
forms of dimensionality reduction andmodel-
ing. However, dimensionality reduction can
also be used for exploratory analyses—for
example, to help in identifying the effect of
observed or latent variables such as attentional
modulation or reward anticipation, which may
not be immediately evident otherwise. Regard-
less of what specific dimensionality reduction
method is used (98–104), the steps following its

application are similar: The components are
typically compared with stimuli, behaviors, or
inferred latent variables to see which compo-
nents may be of interest. Once the interesting
components are found (not necessarily the
“top” ones output by the algorithm), further
exploratory analyses consist of plotting tra-
jectories in pairwise component plots and
annotating those trajectories with various
information (105–108). Success is typically
defined by the ability to identify scientifically
meaningful patterns in suchplots and is usually
followed by quantifications such as those des-
cribed in the next section.
One caveat of this approach is that the

components are often not distinctly identifia-
ble across animals or sessions. For example,
component 2 in one animal may actually be
component 3 in another, or may not even be
found at all. This is not necessarily attribut-
able to variations across animals but rather
to the similarity ofmost dimensionality reduc-
tionmethods: Similar model performance can
be obtained when the components are rotated
or otherwise mixed together, which prevents
a single solution from dominating the cost
function landscape (59, 109). Various approaches
exist to improve identifiability, usually by plac-
ing constraints such as sparsity, orthogonality,
maximum variance ordering, or eigenvalue
decompositions. Another caveat of dimension-
ality reduction is that it requires checking
potentially very many components to find
ones with interesting structure and may also
require pairwise scatter plots between these

components. A more global approach for this
exploratory step was recently proposed as
Rastermap, which is a technique for embed-
ding themain components or clusters of neural
activity into a single plot that can be more
easily visualized on a single-trial basis (110).

Encoding and decoding models

In the previous sections, we discussed several
exploratory analyses and various unsupervised
models that can be fit directly to neural data
and potentially related back to stimuli and
behaviors. For the rest of this Review, we
discuss encoding and decoding models, which
can more directly relate neural activity to ob-
served and latent variables. For example, one
may ask whether neurons across the mouse
brain encode sensory, motor, and/or feedback
information, and this evaluation can be per-
formedon aper-region basis (40). Alternatively,
one may ask how much information a sensory
neuronal population such as V1 contains about
the orientation of a drifting grating, as done in
our study (56). These types of goals can be
achieved with encoding and decoding models,
respectively, which we discuss next, followed
by a section on the statistical caveats that arise
from doing such analyses at scale.

Encoding models

Suppose we wanted to show that a particular
population of neurons strongly encodes some
variables of interest, such as behaviors and
stimuli. We could construct an appropriate
mathematical function that is based on those

Single-neuron analyses 
at scale
(Fig. 1) 

Relating neural activity to 
task variables
(Fig. 3) 

Tuning curve properties

Correlations (with
behavior, stimuli)

Population average

Coding direction

…

Geometry
population vectors, orthogonality, 
dimensionality, subspace 
alignment, 
representational similarity, …

Topology
nearest neighbors, 
cohomology, manifolds, 
...

Dynamics
recurrent neural networks, 
fixed points, attractors, …

by brain area
by cell types
by session
by manipulation
… 

split & 
compare

The structure of neural 
population activity

(Fig. 2) 

Quantify relation between neural 
dynamics, stimuli and behaviors

Prediction on test trials with 
manipulations

Cross -validation & pitfalls

Encoding models
GLMs, reduced 
rank regression…

Decoding models
linear, nonlinear, 
probabilistic

Large-scale 
neural 
population 
recordings

Fig. 4. Frameworks for analyzing large-scale recordings. An overview of analysis methods for large-scale recordings corresponding to the different sections
of this Review.
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variables—an encoding model—fit it to some
training data from the neural responses, and
use the fitted model to predict responses on
test trials (Fig. 3A). In recent work, we did just
that to predict neural responses in superficial
cortex on the basis of orofacial behaviors and
found that we could predict ~55% of the
explainable variance (not accounting for single-
neuron variability) (111). This was only possible
becausewe could fit encodingmodels to a large
population of simultaneously recorded neu-
rons, thus allowing us to fit bigger models,
with more parameters and more predictive
power. In this case, performance continued to
improve until reaching around 10,000 simul-
taneously recorded neurons. It is also possible
to use encodingmodels for linking neural data
to latent variables such as decision variables,
confidence, expectations, beliefs, behavioral
states, policies, or internal time estimates
(65, 80, 95, 103, 112). To do so, one must
first construct a behavioral model to estimate
the latent variables from observable ones then
use these estimates as predictors (112).
Encoding models can also be used to dis-

ambiguate the effect of correlated variables on
neural activity. For example, decision-making
signals are often highly correlated to move-
ment signals, which makes it difficult to dis-
ambiguate whether a neuron in the brain
correlates with the former or the latter. An
encoding model can separate the contribu-
tions of these signals, as long as the signals
have sufficient variability over trials to provide
enough statistical power. This was done in
multiple studies to show that whereas move-
ment signals were widely distributed across
the brain, decision-making signals were much
more spatially restricted (40, 113). Thus, one
must be careful not to wrongly interpret these
movement correlates as correlates of decisions
(113–115) or as correlates of behavior-evoking
stimuli such as sounds (116, 117). It is also not
possible without perturbation studies to know
whether these neural representations are
causally driving movements or if they just
representmotor efference and proprioception.
Encoding models can take a wide range of

mathematical forms. For large-scale neural
activity, a particularly effective class of encod-
ing models can be built by using reduced rank
regression or canonical correlation analysis,
which can capture the relation between a
large number of inputs and outputs by using
a small number of intermediate linear or non-
linear combinations (21, 118, 119). A different
class of encoding models can capture the rela-
tions between neural data and discrete tem-
poral events such as sensory cues or reward
times by using a set of predefined basis func-
tions. When appropriately weighted, these
basis functions define the temporally extended
nature of neural responses to discrete events
(39, 40, 120–123). Encoding models can also be

more powerful nonlinear models such as con-
volutional neural networks (111, 124–126) or
even transformers, which are typically applied
in a self-supervised manner (127, 128).

Decoding methods

Another way to show that a neural popula-
tion encodes an external variable is to decode
that variable from the population activity on
test trials (Fig. 3B). Either actions or stimuli
can be decoded, in continuous-time or on a
trial-by-trial basis (112, 129–134). Performance
is always measured on a test set of time points
or trials not used for training the decoder. The
degree of decodability of a variable may be
informative in itself, especially when analyzed
across time or spatial locations or when com-
pared across brain areas, cell types, or exper-
imental manipulations (106, 135–138). Linear
decoding of abstract variables such as image
categories may be used as evidence for neural
computations that perform input untangling
and increase representational invariance (139).
The scaling of the error as the number of neu-
rons and trials increases can also be informa-
tive. It has been shown that in some cortical
sensory systems, the stimulus decoding error
approaches zero, which is inconsistent with
some information theory–based explanations
for the origins of perceptual errors (Fig. 3A)
(56). When the decoding error does asymptote
at a nonzero value, the deviations of the de-
coder from the true stimulusmay be indicative
of internal variability and can be interpreted
with respect to behaviors such as those re-
porting a perceptual state in trained animals
(140). Last, the decoder may be used to “de-
code” fully internally generated neural activ-
ity such as that which occurs during replay
or during planning in the hippocampus or
HVC (Fig. 3B) (141, 142).

Statistical pitfalls for large-scale analyses

Large-scale analyses have several pitfalls that
can be overcome by using more rigorous me-
thodology. To start, it is important to reduce
the statistical dependence between testing and
training data points asmuch as possible, which
may not be easy to achieve (143). For example,
slowly varying behavioral variables (such as
arousal or pose) may appear to be decodable
on test data if both the neural activity and
the behavior contain slow timescales, which
thus create “nonsense” correlations (144). To
reduce the dependence between train and
test data, time points or trials can be split into
temporally extended blocks, and each block
may be assigned randomly to either train or
test data (21, 111, 143).
The interpretation of the decoding error

can also be a major pitfall because this error
is sometimes assumed to represent neuronal
uncertainty about a decoded stimulus, about
spatial locations, or about latent reward states

in an environment. However, if an insufficient
number of neurons or trials is recorded, the
error is more likely to simply represent decoder
noise, which retains the structure of the noise
on the training trials. When similarities in
noise structure exist between a test and a
train trial, the decoder will output predictions
on that test trial that resemble the training
trial. This type of noise cannot be distinguished
from real signal, unless a very large number
of trials and neurons is available. However,
with sufficiently many neurons and trials, the
decoding error may approach zero in at least
some scenarios (75), in which case the decoder
variability can only be noise rather than re-
presenting internal uncertainty. Thus, a high
bar needs to be cleared before a decoding error
can be interpreted as perceptual uncertainty;
further, perceptual uncertainty may instead
be encoded and used in different ways by
the brain (145). Generally, large-scale record-
ings may allow any variable of interest to be
decoded with sufficiently many neurons, and
this may diminish the role of decoding analyses
for analyzing neural data.
Simple analyses are also not immune from

statistical pitfalls, especially when applied to
large-scale neural data. These pitfalls generally
arise from the variability of single neurons,
which makes the estimation of their param-
eters noisy. This estimation thus becomes a
statistical problem and must be treated with
statistical rigor. As a simple example, consider
the case of sorting neurons in a raster plot ac-
cording to their latency of firing after a stimulus
(Fig. 3C). When the data are displayed on the
trials that were used to obtain the sorting
(training trials), it appears that the neurons
fire in an orderly sequence. However, this
can be a consequence of overfitting to noisy
data, and the same ordering may give com-
pletely random latencies or positions on test
trials from the same experimental condition.
Few studies perform this analysis in a cross-
validated way; an example of the correct
approach is provided in (146).
Many such scenarios exist, and they may

not be easy to recognize. Consider the case of
constructing population tuning curves by align-
ing and averaging single-neuron tuning curves
(Fig. 3C). Implicit in this process is the selection
of the preferred stimulus for each neuron,
which is similar to the process of selecting
the best latency in the previous example. Thus,
a similar bias exists on training trials, in which
an apparent sensory response may simply be
due to overfitting. When a genuine sensory
response is present, it may appear larger on
the training trials than it really is. These biases
are typically eliminated or much reduced on
test trials. The biases might be particularly
difficult to detect in the context of manipu-
lations. In a hypothetical scenario, if the pre-
ferred stimulus is found by using the control
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condition, the tuning curves after a manipula-
tion may appear wider and smaller in ampli-
tude relative to the training trials, when their
width could be unchanged and their ampli-
tude increased when correctly compared with
test trials of the “control” condition. Methods
to detect and address such scenarios are un-
fortunately not sufficiently widespread.

Discussion

This Review can be used as a guide for sci-
entists with large-scale neural data (Fig. 4,
graphical summary). Many of the methods
described above can be used in an exploratory
fashion to identify new relations between
neural activity and behavior or stimuli. Quan-
tification can typically be done with encoding
or decoding analyses, which can be applied
directly to neural data or to the reduced
components found by use of unsupervised
analysis methods. There are numerous pit-
falls that must be avoided when quantifying
high-dimensional data with complex analyses,
and these pitfalls may be difficult to identify
without sufficient experience. Future theoret-
ical and computational studies may be espe-
cially helpful to address these problems, but
they must target an audience of experimental
scientists. Some examples exist of statistical
studies with a combination of simple, intuitive
explanations (147, 148), but an expansion of
the statistical neuroscience field will be neces-
sary to avoid the numerous pitfalls that large-
scale data introduces.
Looking forward, animal neuroscience is

gaining a renewed focus onmore complex and
more ethological behaviors—for example, in
freely moving animals in large environments
(149). Large-scale neural recordings in these
contexts are becoming possible, potentially
with continuous 24/7 monitoring of neural
activity and behavior. The large variability in
these scenarios may create insurmountable
difficulties for most of the analysis methods
we describe above and will require innova-
tion. The large number of potential nuisance
variables (such asenvironmental variables or
spontaneous movements) are very difficult
to control for in such scenarios. Model-based
approaches will be needed for refining and
testing hypotheses iteratively through manip-
ulations of the environment, task, or the neural
activity.
Formore standard neuroscience experiments,

there will still likely be substantial future
progress in analysis methods. The obstacles in
the acquisition of such data have been sub-
stantially reduced, and many laboratories are
finding themselves with more data than they
know what to do with. Establishing collabo-
rations with computational and theoretical
scientists will be key to taking advantage of
this data. To drive faster progress in this field,
experimental neuroscientists will need to adopt

new mathematical concepts and analysis tech-
niques. Summer schools such as the Neuro-
match Academy offer good opportunities for
training in data science methods specifically
with neuroscience applications (150). Now
may be a good time for both newcomers and
established neuroscientists to refresh and update
their knowledge of mathematical concepts
and techniques.
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